
An ensemble based hybrid system for residual
forecasting in Industrial data

Abstract—Time series forecasting has become an important
task for several industrial processes. The employment of machine
learning techniques also contributed to reduce costs and increase
profits. In order to achieve accurate forecasts, it is important
to perform a proper selection of parameters for the forecasting
models. Hybrid sequential systems reduces model uncertainty
through the employment of different models in the time series
and residual series. In this work, an ensemble based hybrid
sequential system is proposed, where a heterogeneous ensemble
is used to perform residual forecasts. In this way, a pool of four
models used in the industrial scenario are employed in order
to achieve accurate forecasts. The experiments were conducted
on real datasets from the industry in hourly averages and daily
averages. The results show that the proposed system achieved
promising results, and was able to improve the accuracy of the
models in the pool in several cases.

Index Terms—Time series forecasting, Hybrid systems, Ensem-
bles

I. INTRODUCTION

Time series forecasting is an important task in many ap-
plications such as economy, sustainability, electricity, etc. The
employment of techniques to increase industrial production
and reduce costs have gained attention in the industry 4.0
scenario [1], [2]. In this sense, forecasting can be an important
feature to analyze production, since it can be applied in soft
sensors to estimate the next measured value, in predictive
maintenance and in digital twins [3], [4]. An important goal of
digital twins models is to predict the future sensors values and
behavior of the system where an action is given. Therefore,
forecasting models can be used for anomaly detection meth-
ods, maintenance and faults management, failures prediction
[5] [3], [4], [6]. Traditional forecasting models such as the
autoregressive integrated moving average (ARIMA) have been
employed in several industrial applications [7]–[9]. The popu-
larity of ARIMA models is due to a well established procedure
proposed by Box and Jenkins [10] to select a proper model,
and the capacity to deal with nonstationary data. Nevertheless,
one limitation of the ARIMA models is the assumption of a
linear correlation structure in time series, which can reduce its
performance in the presence of nonlinear patterns. Considering
that real world data is often composed by a combination of
linear and nonlinear patterns [11], the employment of the
ARIMA model alone may no be sufficient to model the data.

Nonlinear models such as artificial neural networks (ANNs)
and support vector machines (SVMs) have been widely em-
ployed in several time series forecasting applications, due to
their ability to map nonlinear patterns. However, the employ-
ment of single nonlinear models may be challenging since

they can present problems such as model misspecification,
overfitting and underfitting [12].

In order to overcome the limitations of single models (linear
or nonlinear), hybrid systems have been proposed to improve
the forecasting accuracy. In the literature, two hybrid systems
have been explored with promising results: Sequential hybrid
methods and ensemble methods. Sequential hybrid methods
assume that a time series can be decomposed in its linear and
nonlinear components. Thus, such systems are often based on
three steps: time series forecasting, residual forecasting and
combination of forecasts [11], [13], [14]. In the first step,
several works employ a linear model such as the ARIMA to
perform time series forecasting. The error series (residuals) are
calculated as the difference between time series and forecasts,
and are used as an input data to the second step. On the second
step nonlinear models such as ANNs and SVMs are often
employed. Since linear models can perform linear mappings in
the series, it is assumed that the residuals are mostly comprised
by nonlinear patterns which are mapped by a nonlinear model.
The final step performs the combinations of the forecasts
from the time series and residual series. Sequential hybrid
systems have been employed in several applications such as
electricity [15], environmental sciences [16], etc.

Sequential hybrid models have achieved promising results in
the literature, however despite its assumption of decomposition
of the time series in its linear and nonlinear counterparts, some
problems remain unsolved. For instance, the residual data
may present random fluctuations and heteroscedastic patterns,
which can pose a challenge for the specification of nonlinear
models [17], [18].

Ensemble methods can be employed to reduce the risk of
selection of a misspecified model through the combination of
several model. In order to ensure the improvement in accuracy,
the models in the pool must be accurate and diverse from
each other. The errors obtained in the forecasting process
can be decomposed in errors caused by difference between
the average model and the time series (bias error) and the
difference between the single model and the average model
(variance error). Therefore, the bias-variance decomposition of
the error is presented in eq 1, where the target value and past
data of the time series are represented by τ and z respectively,
and E is an expectation operator.

E[τ−f(z)]2 = {τ−E[f(z)]}2+E({E[f(z)]−f(z)}2). (1)

Ensemble methods can reduce model uncertainty by reduc-
ing the variance error without increasing the bias [19], [20],



since several models are considered in the combination. How-
ever, in order improve the accuracy of the system, the models
must be diverse. The diversity may be achieved through the
employment of distinct models in the pool (heterogeneous
ensemble), while using the same models with different pa-
rameters are referred to as homogeneous ensembles.

In this work an ensemble based hybrid sequential system is
proposed to improve the accuracy of forecasts of the system
through the employment of a heterogeneous ensemble to
perform residual forecasts. The combination of forecasts of the
models in the pool is explored using five different operators.

The remainder of this paper is structured as follows: Sec-
tion II presents the related works in the literature of indus-
trial forecasting and hybrid sequential systems. The proposed
method is explained in Section III, the experiments and
discussion are described in Section IV and the conclusion is
given in Section V

II. RELATED WORKS

In general, the literature of time series presents several
forecasting approaches such as single, ensemble and hybrid
models.

The employment of single models consists on obtaining
forecasting values from a statistical or machine learning based
model. In this sense, statistical linear models such as the
ARIMA model have been used in nonstationary data in
industrial applications [21], [22] in order to improve efficiency.
In the light of the limitations of the abovementioned model,
nonlinear models such as ANNs, SVMs [23], [24] have also
been considered to perform forecasts. However, traditional
machine learning methods such as ANNs may present less
number of processing layers (shallow architectures), which
can reduce generalization capacity of the model. In contrast,
deep neural networks (DNNs) are able to deal with complex
nonlinear patterns in large data by using higher number of
processing layers [25]. One example of DNN is the long short-
term memory (LSTM) through which is possible to achieve
promising results in the industrial area [25].

Modelling industrial processes often pose a challenge in
the selection of an appropriate model to perform forecasts.
Considering the large amount of available data and its complex
nonlinear characteristics, the combination of models through
the employment of ensemble techniques have achieved promis-
ing results [26]–[28]. Soares et al. [26] used bootstrap and
noise injection approaches to ensure diversity in the ensemble
in soft sensor design with small datasets. Chen et al. [27]
proposed an adaptive ensemble method to combine local
models, using the Euclidean distance as a similarity measure.
Liu et al. [28] proposed the combination of global and local
Gaussian process regression (GPR) models to forecast in-
dustrial processes variables. Another promising deep learning
approach in the design of soft sensors is the eXtreme Gradient
Boosting (XGBoost) [29]. XGBoost is based on decision-
tree ensemble algorithm, optimized by an improved gradient
boosting [30] and has been applied to a diverse prediction
tasks [31], [32].

Hybrid systems are often designed to improve the accuracy
of single models in different tasks. In the time series forecast-
ing scenario, the use of sequential hybrid systems have gained
attention since it can achieve better results than that of single
and ensemble models [17], [20]. Sequential hybrid systems
are mainly composed of three stages:

• Time series forecasting
• Residual series forecasting
• Combination of forecasts.

Such systems differ from ensembles in several aspects. The
first is that, the models are trained on different data sets, which
are the time series and the residual series. The residual series
is obtained from the difference between actual values from
the series and forecasts achieved by some forecasting model.
The second aspect is that a second model is used to forecast
residual values. And lastly, the combination is not a fusion of
forecasts, and different combination operators are employed.

For instance, Zhang [11] employed an ARIMA model to
perform a linear time series forecasting (L̂t), a Multilayer
Perceptron (MLP) in nonlinear residual forecasting N̂t and
assumed a linear relationship between linear and nonlinear
forecasts through the employment of a summation operator,
thus the final forecast achieved is presented in eq. 2

Ft = L̂t + N̂t. (2)

For the sake of simplicity, the representation of this archi-
tecture will be henceforward referred to as ARIMA+MLP,
representing the ARIMA model in the time series, the MLP
used in the residual series, and the summation operator for
the combination of forecasts. The same architecture were used
in several works in the literature, using different approaches.
Panigrahi and Behera [13] used an exponential smoothing
(ETS) model to perform linear forecasts and a MLP in the
residuals, followed by a summation of forecasts, resulting
in an ETS+MLP hybrid model. Pai and Lin [14] employed
an ARIMA+SVR to forecast stock prices. Fan et al. [33]
employed an ARIMA+LSTM hybrid system in forecasting oil
and gas production.

However, the relation between the linear (L̂t) and nonlinear
(N̂t) forecasts in the combination stage may not always be
linear. In this sense, de Mattos Neto et al. [16] employed a
nonlinear function to perform the combination of forecast, and
the final forecast achieved is presented in eq. 3

F̂t = f(L̂t, N̂t), (3)

where f is the nonlinear function used in the combination. In
this work, the MLP and SVR are employed as combination
functions. A similar concept was used in the work of Khashei
and Bijari [34]. Domingos et al. [35] presented and improved
architecture, where past forecast values from linear and non-
linear models are used as input for the combination function.

The residual forecasting stage is challenging since the resid-
ual series may present irregular patterns and heteroscedasticity.
In order to address this problem in the residua forecasting
stage, Holanda and Oliveira [18] employed a swarm based



ensemble (SBE) to perform forecasts in residual residual
series. The method, named ARIMA+SBE, used a particle
swarm optimization (PSO) [36] algorithm in order to optimize
a SVR mode. The residual forecast was given by the best
optimized particle and the average/median forecast from the
swarm and using part of the population.

However, the employment of swarm based methods to
perform the generation of the forecasting methods may con-
verge to similar locations in the optimization space, producing
less diverse forecasting models. In this way, the proposed
method addresses this problem through the employment of
a heterogeneous ensemble composed by forecasting methods
used in the Industrial scenario (MLP, SVR, XGBoost, LSTM),
and the combinations are based on the average/median of the
base models.

III. PROPOSED METHOD

The proposed hybrid system is comprised of three stages:
time series forecasting, residual forecasting, combination of
forecasts. However, there are two combinations in the pro-
posed hybrid system: one is in the residual forecasting stage,
where the forecasts of individual models from a heterogeneous
ensemble are combined through the use of distinct operators,
and the last combines linear and nonlinear forecasts.

A. Time series forecasting

Fig. 1 presents the architecture of the proposed system. The
first stage consists of performing linear modeling of the time
series through the employment of an ARIMA model, defined
in eq. 4.

Zt = µ+ φ1zt−1 + φ2zt−2 + ...+ φpzt−p + εt

−θ1εt−1 − θ2εt−2 − ...− θqεt−q,
(4)

where zt and εt are the time series value and random error at
time t, respectively; µ, φ1, φ2, ..., φp and θ1, θ2, ..., θq are the
intercept, and the autorregressive coefficients and the moving
average coefficients respectively. The p and q are integers and
refer to the model orders. The ARIMA model is estimated
using the time series (Zt) as input, and then linear forecasts
(L̂t) are produced. The residual series (Et) is calculated by
the difference between the time series and linear forecasts as
shown in eq. 5

Et = Zt − L̂t. (5)

The residual series is used as input in the second stage, of the
proposed system.

B. Residual series forecasting

In the second stage, nonlinear forecasts are obtained from
a pool of singular models composed by the MLP [11], XG-
Boost [30], SVR [37] and LSTM [38], as presented in equation
6, where g is a nonlinear function which considers as input
past residual values (lags) from Et, where et−i represent the
residual value at lag i.

Êt = g(et−1, et−2, ..., et−l). (6)

Fig. 1. Architecture of proposed hybrid system.

Each model in the pool is trained independently using
the residual series. Once the training step is completed, the
residual forecasts of each model can be achieved, being
Êmlp, Êxgb, Êsvr, Êlstm the forecasts from the MLP, XG-
Boost, SVR and LSTM respectively.

In order to achieve the final residual forecast (Eens), the
forecasts obtained by each model in the pool are combined as
shown in eq. 7, where combine is an operator used to combine
the singular residual forecasts.

Êens = combine(Êmlp, Êxgb, Êsvr, Êlstm). (7)

In this stage classic ensemble combination operators for time
series forecasting could be employed. In this work, the fol-
lowing combination strategies are considered:

• Mean of the forecasts
• Median of the forecasts
• Mean of the best x models (Meanx)
• Ordinary least squares (OLS)
The median operator is often preferred when combining

forecasts [39], [40] since it is less sensible to outliers when
compared to the mean operator. The Meanx operator employs
the mean operator in the best x forecasting models, where x
is the number of models, based on the error on the validation
set. The OLS was also considered for combining the forecasts.
Let On×x be a matrix of forecasts for a given dataset, where
n is the number of forecasts and x the number of models,



therefore each column in the matrix represents the forecasts of
one model. The combination of forecasts using OLS consists
of finding weight matrix β as presented in eq. 8.

β = O−1 × Zt (8)

In this way, the residual combination of forecasts will be given
by a weighted sum of individual forecasts.

C. Final forecast

The last step in the proposed model performs the final
combinations of the forecasts achieved in previous steps. The
final forecast (Ft) is achieved by a summation of linear Lt

and nonlinear Eens as presented in eq. 9.

F̂t = L̂t + Êens (9)

The summation operator was considered in this step to analyse
the contribution of the heterogeneous models in the previous
steps.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted in real datasets from the
industry, regarding the operating sensors values of production
machines. The data was collected every 15 minutes from
august 20th 2020 to february 4th 2021, resulting in approxi-
mately 168 days of records. The data represent pressure and
temperature measurements of different sensors: oil pressure
from a spindle motor, coolant temperature, water temperature,
oil temperature and redraw pressure. The abbreviations for the
names are presented in Table I

TABLE I
DATASET SERIES WITH RESPECTIVE ABBREVIATION

Name Abbreviation

Spindle Oil Pressure Oil Pressure

Coolant Temperature Coolant Temp

Water temperature Water Temp

Oil Temperature Oil Temp

Redraw pressure Redraw Pressure

The proposed system was compared with methods used
in the forecast of industrial data, such as ARIMA, SVM,
MLP, LSTM and XGBoost. Furthermore, hybrid systems in
the literature such as ARIMA+MLP [11], ARIMA+SVR [14],
ARIMA+LSTM [33] were also used in the experiments. To
the best of the authors’ knowledge, the ARIMA+XGBOOST
was not explored in previous studies.

In order to better evaluate the performance of the models,
the datasets were split in three subsets: training (60% of the
data), validation (20%) and testing (20%). In order to select the
best set of parameters for each dataset, a grid search procedure
was conducted, where the best configuration with lowest MSE
in the validation set was selected. The parameters used in the
grid search are presented in Table II. It is important to mention
that the same parameters presented in Table II are used in the
search process in the hybrid systems and single models.

TABLE II
VALUES FOR THE PARAMETERS OF THE MODELS

Model Parameters Values
ARIMA p, d, q Hyndman [41] methodology

MLP Number of neurons [10, 50, 100, 200, 400]
Learing Rate [0.0001, 0.001, 0.01, 0.1]
Early Stop [’True’, ’False’]
Epochs [200, 400, 800]
Algorithm [“Adam”, ’SGD’]
lag [1,...,100]

XGBoost Learning Rate [0.001, 0.01, 0.2]
Booster [“gbtree”,’gblinear’]
Max depth [3, 4, 5, 8]
Number of estimators [5, 10, 15, 25, 50, 100]
Minimum Child Weight [1, 2, 3]
Subsample [0.8, 0.9, 1]
Colsamble bytree [0.7, 0.8, 0.9, 1]
lag [1..100]

SVR C [10−1, 100, 101,102]
gamma [10−2 ,10−1, 100, 101,102]
epsilon [10−3 ,10−2, 10−1]
Kernel RBF
lag [1..100]

LSTM Number of Neurons [4, 16, 64, 200]
Epochs [25, 100, 200, 400]
Lags [1..100]

Furthermore, the data sets were scaled to the [0..1] interval
according to Eq. 10, where Znorm is the scaled series, Zmax

and Zmin are the maximum and minimum values of the series
respectively.

Znorm =
Z − Zmin

Zmax − Zmin
(10)

Simulations were performed in two scenarios: the first con-
sidering hourly averages and the second one, daily averages.
The accuracy of the models is given by the mean squared
error (MSE) and the mean absolute percentage error (MAPE)
presented in Eqs 11 and 12, respectively.

MSE =
1

n

n∑
t=1

(Zt − F̂t)
2 (11)

MAPE = 100× 1

n

n∑
t=1

∣∣∣∣∣Zt − F̂t

Zt

∣∣∣∣∣ (12)

The MSE penalizes higher errors, however it is sensitive to
outliers and is scale dependent [42], thus comparisons between
different datasets should be avoided when considering this
metric. In contrast, MAPE produces an absolute percentage
error which is not scale dependent, nevertheless it is an
asymmetric measure, which can measure differently positive
and negative errors [43].

Furthermore, a percentage of improvement (PI) metric over
the ARIMA model is employed to analyze the improvements
of the alternative models. The PI is defined in eq. 13, where



MSEARIMA and MSEModel are the MSEs achieved by the
ARIMA and the compared model respectively.

PI = 100× (
MSEARIMA −MSEModel

MSEARIMA
) (13)

Positive values of PI indicate an increase of performance of
the analyzed model over the ARIMA regarding the considered
metric, otherwise negative values are produced. The same
equation can be employed for other metrics such as MAPE.

For reasons of simplicity, the proposed method will be
represented by the approach used in the residual combina-
tion stage. Thus, in the simulations, each approach will be
referenced as described in Table III.

TABLE III
NOMENCLATURE OF THE PROPOSED METHOD WITH THE COMBINATION

APPROACHES

Abbreviation Detail

ProposedMean Mean of forecasts

ProposedMedian Median of forecasts

ProposedMeanx Mean of best x models

ProposedOLS(Mdl1,Mdl2)
OLS using Models Mdl1 and Mdl2

A. Simulations with hourly averages

In this simulation, hourly averages from the original data
were considered, resulting in approximately 4043 records
for each dataset. Therefore, the amount of data used in the
training, validation and testing sets were 2425, 809 and 809
respectively.

The best results obtained in the simulations are pre-
sented in Table IV. The proposed methods achieved the
best results in datasets Coolant Temp, Water Temp and
Oil Pressure for the MSE metric. Furthermore, the best results
were obtained by the Mean, Mean2 and Median operators.
The ARIMA+MLP achieved the lowest MSE for dataset
Oil Temp. The ARIMA+XGB obtained lowest MSE for Re-
draw Pressure.

When considering the MAPE metric, the proposed meth-
ods obtained the best results in Oil Pressure. ARIMA+MLP
outperformed the other methods in datasets Coolant Temp
and Oil Temp. SVR single obtained the lowest error for Wa-
ter Temp and ARIMA+SVR was the best in Redraw Pressure
dataset.

The Percentage Improvement (PI) is presented on Table V.
The Mean and Median based operators could improve the
results over the ARIMA model in most datasets regarding the
MSE and MAPE metrics. Only in few cases they worsened
ARIMA results. In contrast, the OLS operator only improved
the ARIMA model in few cases and worsened its performance
in a reasonable number of cases.

B. Simulations with daily data

Using daily averages, the total of records is approximately
168 from which 100 records were used for training, 34 for the
validation set and 34 in the test set.

The results of the simulations are presented in Table VI. The
proposed method achieved the best MSE in the Oil Pressure,
Water Temp and Oil Temp datasets with the Mean and Me-
dian based operators. The ARIMA+LSTM achieved the best
MSE in the Oil Pressure dataset.The MLP single achieved the
best MSE in the Coolant Temp dataset.

Regarding the performance using the MAPE metric, the
SVR single model achieved the best results in datasets
Coolant Temp, Water Temp and Oil Temp. The LSTM sin-
gle, achieved the best results in the Oil Pressure dataset.
The ARIMA single, achieved the best results in the Re-
draw Pressure dataset.

The PI over the ARIMA is presented in Table VII. In
general, the proposed method improved the performance of
the ARIMA in several datasets regarding MSE and MAPE.
Nevertheless, the single models LSTM, MLP and SVR also
achieved the best improvements in datasets Oil Pressure,
Coolant Temp, Water Temp and Oil Temp.

C. Discussion

In general, the proposed hybrid system achieved the best
results in the majority of datasets considering the daily and
hourly averages scenarios. The mean and median based oper-
ators achieved the overall best results. It is important to notice
that the best method based on the MSE was not necessarily
the one with best MAPE, this is due to the asymmetry of
the MAPE metric which may evaluate differently positive and
negative forecasting errors [42].

The hybrid systems such as ARIMA+MLP and
ARIMA+SVR also improved the results over the ARIMA,
and outperformed the single models in several cases. Negative
results in Tables V and VII indicate that there was not a
improvement over the ARIMA dataset. Methods that employ
stochastic gradient based learning algorithms such as MLP
often suffer from local minima problems during the training
process. On the other hand, the SVR employs a quadratic
optimization procedure which has a single minimum. On the
other hand, the SVR is very sensible to the hyperparameters.

Therefore, even though some models in the pool did not
improve the ARIMA model, their combination in the residual
forecasting phase could improve the final forecasting accuracy.
This result reinforce the hypothesis that employing ensemble
methods in the residual forecasting stage can improve the
accuracy of the system.

V. CONCLUSION

In this work a heterogeneous ensemble was proposed to
improve the performance in the residual forecasting stage in
the context of sequential hybrid systems using industrial data.
The residual forecasting stage is challenging for single models,
since it may present irregular patterns and heteroscedastic
characteristics.

The proposed model employed forecasting models used in
the literature to compose the pool of forecasts, promoting
the diversity among forecasts. The results obtained in the
experiment were given by the MSE and MAPE metrics, and



TABLE IV
MSE AND MAPE VALUES FOR SINGLE, HYBRID AND ENSEMBLE MODELS, FOR THE HOURLY AVERAGE SCENARIO

Model Oil Pressure Coolant Temp Water Temp Oil Temp Redraw Pressure
MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE

ARIMA 3.4625 3.2961 1.1037 65.4155 2.6611 115.9752 4.3148 647.0621 3.3959 15.2706

LSTM 3.5297 3.4260 1.3035 79.3522 2.7987 129.6995 4.1428 635.1076 3.4990 17.8932

SVR 3.4149 3.2537 1.3709 90.4133 2.4531 125.1537 4.2126 717.5034 3.8653 21.0488

MLP 3.4642 3.2516 1.4917 112.6258 2.8171 131.3245 4.2131 617.6399 3.4007 15.6046

XGBOOST 3.5728 3.4660 1.5971 113.1894 2.6368 127.6695 4.3531 677.7086 3.8494 20.3075

ARIMA + MLP 3.3705 3.1537 1.1001 65.4543 2.6934 115.2826 4.1265 586.2100 3.3974 15.4860

ARIMA + XGB 3.4134 3.1600 1.1056 65.6992 2.6950 122.2328 4.2708 630.8521 3.3912 15.1646
ARIMA + SVR 3.3999 3.1750 1.1185 66.4728 2.6979 117.8294 4.3640 659.0274 3.3202 15.5141

ARIMA + LSTM 3.3951 3.1766 1.1978 76.3058 2.5479 114.4917 4.2658 621.8902 3.3819 15.2320

ProposedMean 3.3811 3.1283 1.1011 65.4396 2.6536 113.3591 4.2428 618.0846 3.3560 15.2564

ProposedMean2
3.3681 3.1361 1.1010 65.4903 2.5953 111.8834 4.1913 599.8784 3.3437 15.3010

ProposedMedian 3.3902 3.1449 1.1029 65.3615 2.6045 112.4022 4.2473 618.3024 3.3654 15.2248

ProposedOLS(MLP,SVR)
3.3750 3.1551 1.1707 68.8959 2.6937 118.0807 4.3442 651.1755 3.3493 15.9573

ProposedOLS(MLP,XGBoost)
3.4253 3.2260 1.1088 65.5081 2.6520 116.6744 4.2927 638.5621 3.4184 15.4120

TABLE V
PERCENTAGE IMPROVEMENT OVER THE ARIMA FOR THE HOURLY AVERAGE SCENARIO

Model Oil Pressure Coolant temp Water temp Oil temp Redraw pressure
MAPE MSE MAPE MSE MAPE MSE MAPE MSE MAPE MSE

LSTM -1.94 -3.94 -18.1 -21.3 -5.17 -11.83 3.99 1.85 -3.04 -17.17

SVR 1.37 1.29 -24.21 -38.21 7.82 -7.91 2.37 -10.89 -13.82 -37.84

MLP -0.05 1.35 -35.15 -72.17 -5.86 -13.23 2.36 4.55 -0.14 -2.19

XGBOOST -3.19 -5.15 -44.7 -73.03 0.91 -10.08 - 0.89 -4.74 -13.35 -32.98

ARIMA+MLP 2.66 4.32 0.33 -0.06 -1.21 0.6 4.36 9.4 -0.04 -1.41

ARIMA+XGB 1.42 4.13 - 0.17 -0.43 -1.27 -5.4 1.02 2.51 0.14 0.69
ARIMA+SVR 1.81 3.67 -1.34 -1.62 -1.38 -1.6 -1.14 -1.85 2.23 -1.59

ARIMA+LSTM 1.95 3.63 -8.53 -16.65 4.25 1.28 1.14 3.89 .41 0.25

ProposedMean 2.35 5.09 0.24 -0.04 0.28 2.26 1.67 4.48 1.17 0.09

ProposedMean2
2.72 4.85 0.24 -0.11 2.47 3.53 2.86 7.29 1.54 -0.20

ProposedMedian 2.09 4.59 0.07 0.08 2.13 3.08 1.56 4.44 0.9 0.3

ProposedOLS(MLP,SVR)
2.53 4.28 -6.07 -5.32 -1.23 -1.82 -0.68 -0.64 1.37 -4.5

ProposedOLS(MLP,XGBoost)
1.07 2.13 - 0.46 - 0.14 0.34 -0.6 0.51 1.31 - .66 -0.93

shows that even though the proposed method did not achieve
the best results in all datasets, it could improve the results of
the members in the pool.

It is important to mention that the architecture of the hybrid
system can be explored in several ways, allowing the usage of
different combination operators, members in the pool or trying
different models in the first stage.

Thus, for future works an automatic ensemble selection
algorithm will be employed to select the best models in the
pool in order to improve the accuracy of the system. Another
possibility is the employment of nonlinear functions in the
final forecast stage.
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